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Abstract

Based on the fault-based attack, the secret information may be revealed in many public-key or secret-key cryptosystems. In this paper, we discuss the fault-based attack and propose a fault-resistant system to detect any fault existed in the modular exponentiation computation. Through the proposed fault-resistant system, it is shown that the public-key cryptosystems can efficiently resist the fault-based attacks.
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1. Introduction

Due to the development and evolution of communications and security technologies, the smart cards have been widely used in these years. Since the smart cards play important roles in electronic commerce, it is very important to design a robust cryptographic system for a tamperfree device to protect from any kind of secret information leakage.

Conventionally, the success of attacks on public-key cryptosystems totally depends on the supposed difficulty of factoring an integer into primes, or solving discrete logarithms. In September 1996, Boneh et al. from Bellcore announced a new type of attack, namely fault-based cryptanalysis, on public-key cryptosystems such as RSA [6]. They described a fault-based attack, which breaks various public-key cryptosystems by taking the advantage of random hardware faults. It is reported that the fault-based attack also works against other public-key cryptosystems with the same algebraic structure, such as the Schnorr and Fiat-Shamir's scheme [10,16], and endangers many network security products and systems.

Following the work of Bellcore, Biham and Shamir proposed a new attack called differential fault analysis (DFA) on secret key cryptosystems such as DES [4]. They claimed that the full DES key can be extracted from a tamperproof DES device by analyzing fewer than 200 faulty ciphertexts. Moreover, another attack that requires less than ten faulty ciphertexts was also shown by Anderson and Kuhn [2]. In addition to Bellcore's work, the fault-based attack on RSA was also proposed by Bao et al. [3]. It was shown that a few bits of fault at some memory locations in smart cards may disclose the secret key. They also proposed several methods to resist the fault-based attacks. However, their solutions are not practical due to the huge time and space complexity as will be shown in Section 3.

In order to detect faults in tamperproof devices during cryptographic computations, we propose a model of self-checking system such that any fault can be detected with very high probability. Our method can also be trivially applied to other public-key cryptosystems with the same algebraic structure. 

The organization of this paper is as follows. At first, we introduce the types of faults and the fault-based cryptanalysis in Section 2. Selective solutions proposed by previous related works are described in Section 3. In Section 4, a new model of self-checking system to validate the modular exponentiations is proposed.  Based on the model, we propose some RSA variants with efficient checking capability, namely self-checking cryptosystem, to resist the fault-based attacks in Section 5. Then, in Section 6, we present the computational complexity of the proposed schemes and their security analysis. Finally, we draw a few conclusions.

2. The Transient Faults and the Fault-based Cryptanalysis 
Due to the attacks by applying stress, electromagnetic wave, ionization, etc., to the tamperproof devices, the information stored in the memory or register may induce random transient faults. That is the information may be erroneous in cryptographic computation. The transient faults can be divided into memory faults and computational faults.

2.1 The memory faults 

Suppose that the original information stored in the memory or register spontaneously flipped from 1 to 0, or vice versa, then errors will occur at the corresponding output even if there is no other error existed in the cryptographic computations. Let 
[image: image287.wmf], where C, f, M, d are the ciphertext, cryptographic function, message and secret key, respectively. Due to the memory faults, the information such as secret key d stored in memory, ROM or RAM, may be changed to a faulty secret d' and then outputs a faulty ciphertext C', where 
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. Some memory fault-based attacks have been proposed in [5,6]. 

The memory faults signify that the fetched information for cryptographic computations is erroneous. These faults can be further divided into two types: (a) The original information in memory is erroneous; (b) The information turns out to be erroneous immediately after it was fetched from the memory, even if the stored information is correct.

If the original message M in the memory is erroneous and no other errors occur in the cryptographic computations, then the output ciphertext is corresponding to another message M', i.e., 
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. In this case, information obtained from the faulty outputs is not sufficient to attack the system since a secure cryptosystem must have the ability to resist the chosen plaintext attack. Similarly, if the original secret key d in the memory is erroneous and no other error occur, then no additional information is really obtained from the error to attack the cryptosystem. The reason is that the system now behaves like the one with a different secret key d' without any error.

On the other hand, if the stored secret information is correct, but randomly caused to faulty immediately after it was fetched from the memory, then some secret information may be revealed by using the faulty output [3, 6]. 

The memory faults can be easily detected or corrected by using conventional coding approaches. If the information is verified immediately after it is fetched from the memory, then the memory faults will be detected with very high probability. A simple coding approach is using the Self-Checking Circuit (SCC) [15], which will be described in detail in Section 4. The self-checking circuit will not produce an erroneous result without an error indication.

2.2 The computational faults

The computational faults include all errors induced during computations. The reasons to find solutions to resist the computational faults are: (1) the processor must access the memory and perform a complex cryptographic computation frequently, the computational faults may occur with higher probability than memory faults; (2) the memory faults can be easily solved by conventional coding approaches. 

A fault-based attack on computational faults for the Chinese Remainder Theorem (CRT) based RSA signature scheme is described as follows. Let 
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 is the Euler totient function. Considering the efficiency of modular exponentiations, it is usually to implement the RSA by using the CRT method rather than directly obtained from 
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 in advance and then obtain the signature C by CRT method, i.e., 
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Suppose that a computational fault occurred in the computation of a partial signature. Let 
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 be the correct one, then the faulty signature will be 
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. If an attacker obtains the message M and the faulty signature C', then prime q will be revealed by using 
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, where GCD denotes the greatest common divisor. Thus the RSA cryptosystem will be completely broken by using only one computational fault [11].

2.3 The fault-based cryptanalysis 

For ease of illustration, the fault-based cryptanalysis can be described briefly as follows. Let 
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, where d is the secret key, M is the input plaintext, h is a small Hamming weight error in M or d that is caused by stress, ionizing, microwave or so on, f denotes the encryption/decryption function and C is the ciphertext.  

If there is no error occurred during cryptographic computation, i.e., 
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 denotes the exact corresponding ciphertext without error. However, if there are some bits of secret key changed from 1 to 0 or vice versa, then the attacker will disclose the secret key by using faulty outputs. That is, given 
[image: image21.wmf]C

0

 and a faulty output 
[image: image22.wmf]C

i

, where 
[image: image23.wmf]C

f

M

d

h

i

i

=

(

,

,

)

, 
[image: image24.wmf]h

i

¹

0

, it is possible for an attacker to obtain some information about secret key d. If the attacker performs the procedures repeatedly, then the exact secret key will be revealed. Hence the cryptosystem is not secure under the fault-based cryptanalysis.

3. Previous Results
3.1 A variety of solutions

Based on the fault-based cryptanalysis, Boneh et al. [6] and Bao et al. [3] proposed some methods to counter these attacks. However, these methods still have some disadvantages as follows.

(1) "The attack may be avoided by recomputation" [3, 6].
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 Since the error may be caused by software or hardware bugs, and the faults that may have been planted during the design or manufacture processes of the device, it may produce the same faults by recomputation. Thus this method is still insecure. Moreover, this method is inefficient since it doubles the computation time.

(2) Before outputting the result, "Verifying the result by checking 
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 Although this approach can resist the computational fault attacks. However, for security reasons, it is better not to choose e too small. If e is large enough then the computation complexity will be increased. Thus it is usually inefficient on verification computation of some cases. 

(3) For RSA, "A random string R is chosen by the smart card and concatenated to a message M which is to be signed by smart card" [3, 6].
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 By random padding, the probability to sign the same message twice can be neglected. Hence the adversary cannot obtain the correct and corrupted pair of results to successfully attack the system. However, this method not only enlarges the entropy of the ciphertext but also decreases the efficiency of computation and transmission. Moreover, it is infeasible to perform random padding in the register during computations due to huge time and space complexities.

(4) "The device computes 
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 is a corrupted result due to error occurred in the computations mod p or mod q, then by the method described in Section 2, the prime p or q can be obtained by computing 
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. Hence this method is still insecure if the system is implemented with CRT. 

3.2 The coding-based fault resistant system (CBFRS)

In 1999, Laih et al. proposed a coding-based fault resistant system (CBFRS) to resist fault attack [13]. In CBFRS, message space 
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The message x of CBFRS is sent to the input of the Encoder. The output codeword X, is verified to make sure that there is no error in encoding process by checking whether 
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 is hold or not. After the original message x is encoded into codewords X successfully, the codeword X is stored in memory or sent to compute.

All computations in CBFRS are operated in 
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The final result shall extract from 
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Figure 1. The coding based fault resistant system

The CBFRS can detect memory faults and computational faults, the probability that memory faults or computational faults cannot be detected is 1/R. The computational overhead is 6.3% for N and R are 1024 and 32 bit length, respectively.

4. The Self-checking System to Resist Fault-based Attack
In this section, we present an efficient model of modular exponentiations with checking ability, called self-checking system, to resist the fault-based attack. The model includes a functional system and a checking system which are defined as follows. Based on the self-checking system, we propose an integral algorithm for modular exponentiation. 

4.1 Definitions

Definition 1.

A self-checking system is a system which will produce the exact output if there is no computational fault. This system consists of a functional system and a checking system. The functional system not only produces the corresponding output by using a specific algorithm, but also outputs the checking information computed by a predefined algorithm simultaneously. The checking system efficiently computes and outputs checking information independently by using a checking algorithm.

4.2 The self-checking circuit to resist memory faults

The memory faults can be solved by using the self-checking circuit (SCC) [15]. The self-checking circuit is a device to validate the message in memory devices. According to coding approaches, the message M or secret d is encoded to X before it is stored in the memory. If a cryptographic computation is performed, X will be decoded and recovered to message M or secret d by functional circuit. In other path, message M or secret d is recovered and verified in the checking circuit to see if there is any error occurred before outputs. If the verification is successful then the SCC will output M or d; otherwise, the SCC activates an alarm I. The self-checking circuit is shown in Figure 2.         
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Figure 2. The self-checking circuit (SCC) to resist memory faults

4.3 The self-checking system

The self-checking system is shown in Figure 3. In the beginning, the message and secret key are fetched from memory, and hereby verified by a self-checking circuit (SCC) to resist memory faults attack. If the SCC indicates that is error-free, then the functional system computes and outputs the corresponding ciphertext 
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(1) If there is no computational fault then 
[image: image64.wmf]R

NR

C

C

=

, and the system outputs the correct ciphertext 
[image: image65.wmf]C

N

.

(2) If there are computational faults, then the probability to detect 
[image: image66.wmf]C

C

NR

R

¹

 is very high.


[image: image67.wmf]Functional

system

C

C

Checking

system

C

R



N



Encoded

Message

No

Comparison

C

N



SCC

NR

Encoded

Secret key

SCC

Yes

Error

Indication

M

d




Figure 3. The model of self-checking system for modular operations

4.4 An algorithm of modular multiplication for the functional system 

Modular multipliations are the basic operations of modular exponentiations, which in turn are the major parts of most cryptosystems. An efficient algorithm of modular multiplication for functional system is as follows.

Let the modular multipliations be 
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On computational complexity, it needs 
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4.5 An integral algorithm for functional system on modular exponentiation

Let the moduli be N and R, 
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4.6 An efficient approach for modulo R 
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Thus the computational complexity for the modular computation of 
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5. The Proposed Self-Checking Cryptosystems
Based on the proposed self-checking system, the modular exponentiation based cryptosystem can be modified to resist the computational fault attacks. The modified cryptosystem with checking computation capability is called self-checking cryptosystem. For an ideal self-checking cryptosystem, it must have the following properties:

(1) The computational overhead should be very small.

(2) The checking ability must be independent of computational faults, i.e. they should be able to detect any computational fault.

(3) The probability that faults cannot be detected should be small. 

Based on the above properties, we propose three self-checking cryptosystems for RSA to resist the computational fault attacks. The proposed self-checking cryptosystem can also be used on other public-key cryptoschemes which are based on modular exponentiations. Here, we assume that there is no memory fault existed in the cryptographic computations. Without loss of generality, we only describe the RSA digital signature cryptosystem. The following schemes will output the exact corresponding output 
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5.1 Scheme 1

This is a basic self-checking cryptosystem to resist fault-based attack. According to the self-checking system, the functional system outputs 
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5.2 Scheme 2 (CRT-based and without checking system)

In CRT, 
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Theorem 1. In Scheme 2, if no memory fault or computational fault occurred, then 
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5.3 Scheme 3 (CRT-based and with checking system)

Based on the self-checking system, the functional system computes 
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6. Discussions
6.1 Probability of fault detection failure and security analysis

If two checking informations in self-checking cryptosystem are the same while errors still occurred, then the schemes will fail. Obviously, the probability in this case is 1/R. If we choose 
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 then the probability that faults cannot be detected is very small. Moreover, in this case, the computation can be speed up further.

For Algorithm NR, if error occurred in computation of 
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Since the proposed methods only add checking computation in original schemes and the immediate checking message does not be revealed, the proposed schemes reveal no more information than the original ones. Thus the attackers cannot obtain more message from the proposed schemes. Therefore, the security of the proposed schemes is the same as that of original RSA.

6.2 Computational complexity 
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 denotes the logarithm magnitude of x. The performance of the above three schemes is shown in Table I, where the method proposed in Section 4.6 has not been applied. Thus if that method is used then the computation will be speed up further. The bit operations of the original schemes for Scheme 2 and 3 are CRT-based. In general, it needs 
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with CRT. It is shown that all our proposed schemes have good performance. Among them, Scheme 1 is the most efficient algorithm on the consideration of computational overhead. Here, we assume that 
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Since the length of public key for the RSA cryptosystem is always as small as 16 bits, the performance of the proposed schemes seems not very impressive. However, for some cryptosystems with larger exponentiation such as the Diffie-Hellman key distribution scheme [8] and the Digital Signature Algorithm (DSA) [14], our methods have high performance in computation.

 Table I. The performance of the proposed schemes

Scheme
Computation

formula
Complexity

(bit operations)
Total computations

(bit operations)
Computational overhead
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7. Conclusions
In some security models such as electronic commerce, the protection for the secret information in a tamperproof device (e.g., smart card) is very important. However, it is shown that the secret keys can always be revealed by using transient faults in many public-key cryptosystems. In this paper, we discuss the classification of faults from the sources of the security breaches, and propose a model of self-checking system to resist computational fault-based attacks. The proposed methods can also be applied to other public-key cryptosystems whose algorithm is based on modular multiplication operations such as the Diffie-Hellman, DSA, ElGamal, Schnorr schemes and so on [8,9,14,16]. The proposed fault-resistant systems have high performance in computation and error detection.
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