 The Fault-based Attack on Public-key Cryptosystems and Its Countermeasures
IICM 第二卷 第三期 民國八十八年九月
 The Fault-based Attack on Public-key Cryptosystems and Its Countermeasures

The Fault-based Attack on Public-key Cryptosystems and Its Countermeasures
Chi-Sung Laih, Yung-Cheng Lee and Fu-Kuan Tu

賴溪松、李永振、涂福寬
 Department of Electrical Engineering, National Cheng Kung University, Taiwan, R.O.C.

 Department of Electrical Engineering, National Huwei Institute of Technology, Taiwan, R.O.C.

Abstract

Based on the fault-based attack, the secret information may be revealed in many public-key or secret-key cryptosystems. In this paper, we discuss the fault-based attack and propose a fault-resistant system to detect any fault existed in the modular exponentiation computation. Through the proposed fault-resistant system, it is shown that the public-key cryptosystems can efficiently resist the fault-based attacks.

Index Terms:
Fault-based cryptanalysis, Modular multiplication, Tamperfree device, Cryptosystem.

1. Introduction

Due to the development and evolution of communications and security technologies, the smart cards have been widely used in these years. Since the smart cards play important roles in electronic commerce, it is very important to design a robust cryptographic system for a tamperfree device to protect from any kind of secret information leakage.

Conventionally, the success of attacks on public-key cryptosystems totally depends on the supposed difficulty of factoring an integer into primes, or solving discrete logarithms. In September 1996, Boneh et al. from Bellcore announced a new type of attack, namely fault-based cryptanalysis, on public-key cryptosystems such as RSA [6]. They described a fault-based attack, which breaks various public-key cryptosystems by taking the advantage of random hardware faults. It is reported that the fault-based attack also works against other public-key cryptosystems with the same algebraic structure, such as the Schnorr and Fiat-Shamir's scheme [10,16], and endangers many network security products and systems.

Following the work of Bellcore, Biham and Shamir proposed a new attack called differential fault analysis (DFA) on secret key cryptosystems such as DES [4]. They claimed that the full DES key can be extracted from a tamperproof DES device by analyzing fewer than 200 faulty ciphertexts. Moreover, another attack that requires less than ten faulty ciphertexts was also shown by Anderson and Kuhn [2]. In addition to Bellcore's work, the fault-based attack on RSA was also proposed by Bao et al. [3]. It was shown that a few bits of fault at some memory locations in smart cards may disclose the secret key. They also proposed several methods to resist the fault-based attacks. However, their solutions are not practical due to the huge time and space complexity as will be shown in Section 3.

In order to detect faults in tamperproof devices during cryptographic computations, we propose a model of self-checking system such that any fault can be detected with very high probability. Our method can also be trivially applied to other public-key cryptosystems with the same algebraic structure.

The organization of this paper is as follows. At first, we introduce the types of faults and the fault-based cryptanalysis in Section 2. Selective solutions proposed by previous related works are described in Section 3. In Section 4, a new model of self-checking system to validate the modular exponentiations is proposed. Based on the model, we propose some RSA variants with efficient checking capability, namely self-checking cryptosystem, to resist the fault-based attacks in Section 5. Then, in Section 6, we present the computational complexity of the proposed schemes and their security analysis. Finally, we draw a few conclusions.

2. The Transient Faults and the Fault-based Cryptanalysis
Due to the attacks by applying stress, electromagnetic wave, ionization, etc., to the tamperproof devices, the information stored in the memory or register may induce random transient faults. That is the information may be erroneous in cryptographic computation. The transient faults can be divided into memory faults and computational faults.

2.1 The memory faults

Suppose that the original information stored in the memory or register spontaneously flipped from 1 to 0, or vice versa, then errors will occur at the corresponding output even if there is no other error existed in the cryptographic computations. Let
[image: image287.wmf], where C, f, M, d are the ciphertext, cryptographic function, message and secret key, respectively. Due to the memory faults, the information such as secret key d stored in memory, ROM or RAM, may be changed to a faulty secret d' and then outputs a faulty ciphertext C', where
[image: image2.wmf]C

f

M

d

'

(

,

'

)

=

 and
[image: image3.wmf]C

C

'

¹

. Some memory fault-based attacks have been proposed in [5,6].

The memory faults signify that the fetched information for cryptographic computations is erroneous. These faults can be further divided into two types: (a) The original information in memory is erroneous; (b) The information turns out to be erroneous immediately after it was fetched from the memory, even if the stored information is correct.

If the original message M in the memory is erroneous and no other errors occur in the cryptographic computations, then the output ciphertext is corresponding to another message M', i.e.,
[image: image4.wmf]C

f

M

d

'

(

'

,

)

=

. In this case, information obtained from the faulty outputs is not sufficient to attack the system since a secure cryptosystem must have the ability to resist the chosen plaintext attack. Similarly, if the original secret key d in the memory is erroneous and no other error occur, then no additional information is really obtained from the error to attack the cryptosystem. The reason is that the system now behaves like the one with a different secret key d' without any error.

On the other hand, if the stored secret information is correct, but randomly caused to faulty immediately after it was fetched from the memory, then some secret information may be revealed by using the faulty output [3, 6].

The memory faults can be easily detected or corrected by using conventional coding approaches. If the information is verified immediately after it is fetched from the memory, then the memory faults will be detected with very high probability. A simple coding approach is using the Self-Checking Circuit (SCC) [15], which will be described in detail in Section 4. The self-checking circuit will not produce an erroneous result without an error indication.

2.2 The computational faults

The computational faults include all errors induced during computations. The reasons to find solutions to resist the computational faults are: (1) the processor must access the memory and perform a complex cryptographic computation frequently, the computational faults may occur with higher probability than memory faults; (2) the memory faults can be easily solved by conventional coding approaches.

A fault-based attack on computational faults for the Chinese Remainder Theorem (CRT) based RSA signature scheme is described as follows. Let
[image: image5.wmf]N

pq

=

 and
[image: image6.wmf]e

d

N

×

=

1

(mod

(

))

f

, where p and q are large primes, N is public information, e and d are public and secret keys, respectively; and
[image: image7.wmf]f

(

)

×

 is the Euler totient function. Considering the efficiency of modular exponentiations, it is usually to implement the RSA by using the CRT method rather than directly obtained from
[image: image8.wmf]C

M

N

d

=

(mod

)

. That is to say, we usually compute the partial signatures with
[image: image9.wmf]C

M

p

p

d

=

(mod

)

 and
[image: image10.wmf]C

M

q

q

d

=

(mod

)

 in advance and then obtain the signature C by CRT method, i.e.,
[image: image11.wmf]C

crt

N

p

q

C

C

p

q

=

(

,

,

,

,

)

.

Suppose that a computational fault occurred in the computation of a partial signature. Let
[image: image12.wmf]C

p

'

 be a faulty partial signature of
[image: image13.wmf]C

p

 and
[image: image14.wmf]C

q

 be the correct one, then the faulty signature will be
[image: image15.wmf]C

crt

N

p

q

C

C

p

q

'

(

,

,

,

'

,

)

=

. If an attacker obtains the message M and the faulty signature C', then prime q will be revealed by using
[image: image16.wmf])

,

)

((

N

M

C

GCD

q

e

-

=

, where GCD denotes the greatest common divisor. Thus the RSA cryptosystem will be completely broken by using only one computational fault [11].

2.3 The fault-based cryptanalysis

For ease of illustration, the fault-based cryptanalysis can be described briefly as follows. Let
[image: image17.wmf]C

f

M

d

h

=

(

,

,

)

, where d is the secret key, M is the input plaintext, h is a small Hamming weight error in M or d that is caused by stress, ionizing, microwave or so on, f denotes the encryption/decryption function and C is the ciphertext.

If there is no error occurred during cryptographic computation, i.e.,
[image: image18.wmf]h

=

0

, then
[image: image19.wmf]C

C

=

0

, where
[image: image20.wmf]C

0

 denotes the exact corresponding ciphertext without error. However, if there are some bits of secret key changed from 1 to 0 or vice versa, then the attacker will disclose the secret key by using faulty outputs. That is, given
[image: image21.wmf]C

0

 and a faulty output
[image: image22.wmf]C

i

, where
[image: image23.wmf]C

f

M

d

h

i

i

=

(

,

,

)

,
[image: image24.wmf]h

i

¹

0

, it is possible for an attacker to obtain some information about secret key d. If the attacker performs the procedures repeatedly, then the exact secret key will be revealed. Hence the cryptosystem is not secure under the fault-based cryptanalysis.

3. Previous Results
3.1 A variety of solutions

Based on the fault-based cryptanalysis, Boneh et al. [6] and Bao et al. [3] proposed some methods to counter these attacks. However, these methods still have some disadvantages as follows.

(1) "The attack may be avoided by recomputation" [3, 6].

[image: image25.wmf]·

 Since the error may be caused by software or hardware bugs, and the faults that may have been planted during the design or manufacture processes of the device, it may produce the same faults by recomputation. Thus this method is still insecure. Moreover, this method is inefficient since it doubles the computation time.

(2) Before outputting the result, "Verifying the result by checking
[image: image26.wmf]C

M

e

=

" [3].

[image: image27.wmf]·

 Although this approach can resist the computational fault attacks. However, for security reasons, it is better not to choose e too small. If e is large enough then the computation complexity will be increased. Thus it is usually inefficient on verification computation of some cases.

(3) For RSA, "A random string R is chosen by the smart card and concatenated to a message M which is to be signed by smart card" [3, 6].

[image: image28.wmf]·

 By random padding, the probability to sign the same message twice can be neglected. Hence the adversary cannot obtain the correct and corrupted pair of results to successfully attack the system. However, this method not only enlarges the entropy of the ciphertext but also decreases the efficiency of computation and transmission. Moreover, it is infeasible to perform random padding in the register during computations due to huge time and space complexities.

(4) "The device computes
[image: image29.wmf]r

d

 and
[image: image30.wmf](

)

rM

d

 with random number r, and then outputs
[image: image31.wmf]d

d

r

rM

C

/

)

(

=

 " [3].

[image: image32.wmf]·

 From computation viewpoint, it is usually to compute
[image: image33.wmf](

)

(mod

)

rM

p

d

 and
[image: image34.wmf](

)

(mod

)

rM

q

d

 in advance, and then obtain
[image: image35.wmf](

)

(mod

)

rM

N

d

 by using CRT. However, if
[image: image36.wmf](

(

)

)

'

rM

d

 is a corrupted result due to error occurred in the computations mod p or mod q, then by the method described in Section 2, the prime p or q can be obtained by computing
[image: image37.wmf]gcd

(

(

(

(

)

)

'

)

,

)

r

M

r

M

N

d

d

e

-

. Hence this method is still insecure if the system is implemented with CRT.

3.2 The coding-based fault resistant system (CBFRS)

In 1999, Laih et al. proposed a coding-based fault resistant system (CBFRS) to resist fault attack [13]. In CBFRS, message space
[image: image38.wmf]Z

N

 is embedded into
[image: image39.wmf]Z

NR

 and operated in
[image: image40.wmf]Z

NR

. The Encoder mapped message x in
[image: image41.wmf]Z

N

 into X in
[image: image42.wmf]Z

NR

 by
[image: image43.wmf])

(mod

*

NR

RR

x

X

=

, where
[image: image44.wmf]GCD

R

N

(

,

)

=

1

 and
[image: image45.wmf]R

R

N

×

=

*

(

mod

)

1

.

The message x of CBFRS is sent to the input of the Encoder. The output codeword X, is verified to make sure that there is no error in encoding process by checking whether
[image: image46.wmf]0

=

X

R

(

mod

)

 is hold or not. After the original message x is encoded into codewords X successfully, the codeword X is stored in memory or sent to compute.

All computations in CBFRS are operated in
[image: image47.wmf]Z

NR

. After addition or multiplication computations,
[image: image48.wmf])

(mod

NR

Y

X

Z

+

=

 or
[image: image49.wmf]XY

Z

=

[image: image50.wmf])

(mod

NR

, are done, an error-checking should be made to dectect any possible computational errors. The checking process is checked to see whether the result is still a codeword in
[image: image51.wmf]Z

NR

, i.e. divided by R or not.

The final result shall extract from
[image: image52.wmf]Z

NR

. Thus, a decoder is needed to provide the inverse mapping from
[image: image53.wmf]Z

NR

 into
[image: image54.wmf]Z

N

. The decoder mapped the codeword Z into z by
[image: image55.wmf]z

Z

N

=

(

mod

)

. The coding based fault resistant system is shown in Figure 1. For the details, the authors encourage readers to refer [13].

[image: image56.wmf]Encoder

Decoder

y

x

z

Error

Checking

X

Y

Z

yes

Stop

Encoder

Error

Checking

Error

Checking

Z

no

yes

yes

Y

X

Stop

no

no

Addition

Multiplication

Figure 1. The coding based fault resistant system

The CBFRS can detect memory faults and computational faults, the probability that memory faults or computational faults cannot be detected is 1/R. The computational overhead is 6.3% for N and R are 1024 and 32 bit length, respectively.

4. The Self-checking System to Resist Fault-based Attack
In this section, we present an efficient model of modular exponentiations with checking ability, called self-checking system, to resist the fault-based attack. The model includes a functional system and a checking system which are defined as follows. Based on the self-checking system, we propose an integral algorithm for modular exponentiation.

4.1 Definitions

Definition 1.

A self-checking system is a system which will produce the exact output if there is no computational fault. This system consists of a functional system and a checking system. The functional system not only produces the corresponding output by using a specific algorithm, but also outputs the checking information computed by a predefined algorithm simultaneously. The checking system efficiently computes and outputs checking information independently by using a checking algorithm.

4.2 The self-checking circuit to resist memory faults

The memory faults can be solved by using the self-checking circuit (SCC) [15]. The self-checking circuit is a device to validate the message in memory devices. According to coding approaches, the message M or secret d is encoded to X before it is stored in the memory. If a cryptographic computation is performed, X will be decoded and recovered to message M or secret d by functional circuit. In other path, message M or secret d is recovered and verified in the checking circuit to see if there is any error occurred before outputs. If the verification is successful then the SCC will output M or d; otherwise, the SCC activates an alarm I. The self-checking circuit is shown in Figure 2.

[image: image57.wmf]Functional

circuit

Checking

circuit

Input

message

Output

Error indication

yes

no

X

I

M

d

or

M d

or

Encoder

Memory

devices

Self-checking circuit

Figure 2. The self-checking circuit (SCC) to resist memory faults

4.3 The self-checking system

The self-checking system is shown in Figure 3. In the beginning, the message and secret key are fetched from memory, and hereby verified by a self-checking circuit (SCC) to resist memory faults attack. If the SCC indicates that is error-free, then the functional system computes and outputs the corresponding ciphertext
[image: image58.wmf]C

N

 and the checking information
[image: image59.wmf]C

NR

. The checking system obtains the other checking information
[image: image60.wmf]C

R

 independently. If
[image: image61.wmf]C

NR

 is equal to
[image: image62.wmf]C

R

 then the computations are error-free and the self-checking system outputs
[image: image63.wmf]C

N

. Otherwise, there are faults in computations, and the self-checking system outputs only an error indication. The self-checking system have the following properties:

(1) If there is no computational fault then
[image: image64.wmf]R

NR

C

C

=

, and the system outputs the correct ciphertext
[image: image65.wmf]C

N

.

(2) If there are computational faults, then the probability to detect
[image: image66.wmf]C

C

NR

R

¹

 is very high.

[image: image67.wmf]Functional

system

C

C

Checking

system

C

R

N

Encoded

Message

No

Comparison

C

N

SCC

NR

Encoded

Secret key

SCC

Yes

Error

Indication

M

d

Figure 3. The model of self-checking system for modular operations

4.4 An algorithm of modular multiplication for the functional system

Modular multipliations are the basic operations of modular exponentiations, which in turn are the major parts of most cryptosystems. An efficient algorithm of modular multiplication for functional system is as follows.

Let the modular multipliations be
[image: image68.wmf]C

C

C

N

N

=

×

1

2

(

mod

)

. In order to detect computational faults, the functional system chooses a modulus R, then consistently computes
[image: image69.wmf]C

C

C

N

N

=

×

1

2

(

mod

)

 and
[image: image70.wmf]C

C

C

R

NR

=

×

1

2

(

mod

)

such that
[image: image71.wmf]C

N

 and
[image: image72.wmf]C

NR

 have very high correlation in computation. That is if
[image: image73.wmf]C

N

 is erroneous then
[image: image74.wmf]C

NR

 will be faulty with very high probability. On the other hand, the checking system independently computes
[image: image75.wmf]C

R

 by using an efficient approach (see Section 4.6). Finally, the self-checking system compares
[image: image76.wmf]C

NR

 and
[image: image77.wmf]C

R

 to determine whether computational faults occurred or not.

In the beginning, we present integer
[image: image78.wmf]C

1

 in a general form:

[image: image79.wmf]1

1

1

r

S

C

+

=

,
(1)

where
[image: image80.wmf]r

C

N

1

1

=

(

mod

)

 and
[image: image81.wmf]S

Q

N

1

1

=

×

,
[image: image82.wmf]Q

1

 is the quotient of
[image: image83.wmf]C

1

 divided by N. Note that N divides
[image: image84.wmf]1

S

, and the multiplication of
[image: image85.wmf]Q

N

i

×

 needs not to be performed immediately. Both
[image: image86.wmf]Q

1

 and
[image: image87.wmf]1

r

 come along with the modular operations of
[image: image88.wmf]C

N

1

(

mod

)

. That is when a modular computation is performed, the residue and quotient can be obtained together.

Similarly,
[image: image89.wmf]C

2

 can also be presented by

[image: image90.wmf]2

2

2

r

S

C

+

=

,
(2)

where
[image: image91.wmf]r

C

N

2

2

=

(

mod

)

 and
[image: image92.wmf]S

Q

N

2

2

=

×

.
[image: image93.wmf]Q

2

 also comes along with modular operations of
[image: image94.wmf]C

N

2

(

mod

)

. In general, both
[image: image95.wmf]S

1

 and
[image: image96.wmf]S

2

 are zero initially, and will become nonzero after some iterations of operations.

The multiplication of
[image: image97.wmf]C

1

 and
[image: image98.wmf]C

2

 can be expressed by

[image: image99.wmf]C

C

S

r

S

r

1

2

1

1

2

2

×

=

+

×

+

(

)

(

)

[image: image100.wmf]=

+

+

+

S

S

S

r

S

r

r

r

1

2

1

2

2

1

1

2

[image: image101.wmf]=

+

+

+

×

+

S

S

S

r

S

r

Q

N

r

N

1

2

1

2

2

1

3

,

where
[image: image102.wmf])

(mod

2

1

3

N

r

r

r

=

,
[image: image103.wmf]Q

N

 comes along with modular operations of
[image: image104.wmf]r

r

N

1

2

(

mod

)

. Hence if
[image: image105.wmf]C

1

 multiplies
[image: image106.wmf]C

2

, the result
[image: image107.wmf]C

N

 can be presented by

[image: image108.wmf]3

3

r

S

C

N

+

=

,
(3)

where
[image: image109.wmf]S

S

S

S

r

S

r

Q

N

N

3

1

2

1

1

2

1

=

+

+

+

×

, and N divides
[image: image110.wmf]3

S

. Note the result of
[image: image111.wmf]3

S

 need not to be computed immediately. It will be easily computed later in Eq.(5).

Let
[image: image112.wmf]NR

C

 be the result of
[image: image113.wmf]C

1

 multiplies
[image: image114.wmf]C

2

 in modulo R, thereby
[image: image115.wmf]NR

C

 is equal to:

[image: image116.wmf]C

s

r

NR

=

+

3

3

 ,
(4)

where

[image: image117.wmf])

(mod

)

(

1

2

1

1

2

1

3

R

N

Q

r

S

r

S

S

S

s

N

×

+

+

+

=

.
(5)

Thus if input messages
[image: image118.wmf]C

i

,
[image: image119.wmf]i

Î

{

,

}

1

2

, can be described as
[image: image120.wmf]C

S

r

i

i

i

=

+

 and
[image: image121.wmf]i

i

i

r

R

S

C

+

=

)

(mod

 in modulo N and R, respectively, where
[image: image122.wmf]N

Q

S

i

i

×

=

, then the results of modular multiplications can also be expressed in the same forms. Moreover, the result in modular R is consistent with the computation in modular N. Thus these results under two different moduli have very high correlation.

On computational complexity, it needs
[image: image123.wmf]l

2

 bit operations to find
[image: image124.wmf]C

C

C

N

N

=

×

1

2

(

mod

)

. In finding
[image: image125.wmf]C

C

C

R

NR

=

×

1

2

(

mod

)

, at most
[image: image126.wmf]4

2

k

 more bit operations will be needed, where l and
[image: image127.wmf]k

 are the logarithm magnitude of N and R, respectively. If we choose
[image: image128.wmf]k

l

<

<

 then the computational overhead is very low. The computational overhead is defined as

Computational overhead =
[image: image129.wmf]O

O

O

prop

org

org

-

´

100

%

(6)

where
[image: image130.wmf]O

prop

 is the computational complexity in bit operations of the proposed method and denotes the bit operations needed in computing both
[image: image131.wmf]C

N

 and
[image: image132.wmf]C

NR

.
[image: image133.wmf]O

org

 denotes the computational complexity in bit operations of the original scheme which performs computation for
[image: image134.wmf]C

N

. The computational overhead will less than
[image: image135.wmf]4

0

4

2

2

k

l

=

.

%

 for the proposed algorithm with
[image: image136.wmf]l

=

1024

 and
[image: image137.wmf]k

=

32

.

4.5 An integral algorithm for functional system on modular exponentiation

Let the moduli be N and R,
[image: image138.wmf]N

R

<<

, the binary representation of secret key be
[image: image139.wmf]d

d

d

d

d

l

l

=

-

1

2

1

.

.

.

[image: image1.wmf]C

f

M

d

=

(

,

)

 and
[image: image140.wmf]1

=

l

d

. Based on the method in previous section, we propose an efficient algorithm (Algorithm NR) of modular exponentiation for the functional system. This algorithm consistently computes ciphertext
[image: image141.wmf]C

M

N

N

d

=

(mod

)

 and checking information
[image: image142.wmf]C

M

R

NR

d

=

(

mod

)

 to ensure both results are computed by using the same secret message.

 The Algorithm NR

Function
[image: image143.wmf])

,

,

,

,

,

(

NR

N

C

C

R

N

d

M

[image: image144.wmf];

0

;

0

;

;

0

;

0

=

=

=

=

=

NR

N

C

C

M

r

S

q

init

[image: image145.wmf]do

downto

l

i

For

1

1

-

=

[image: image146.wmf];

{

2

r

C

N

=

[image: image147.wmf]);

(mod

N

C

C

N

=

[image: image148.wmf])

(mod

2

2

R

N

Q

Sr

S

S

N

×

+

+

=

; *

[image: image149.wmf];

C

r

=

[image: image150.wmf]then

d

If

i

1

=

[image: image151.wmf];

{

rM

C

N

=

[image: image152.wmf]);

(mod

N

C

C

N

=

[image: image153.wmf])

(mod

R

N

Q

SM

S

N

×

+

=

; *

[image: image154.wmf];

C

r

=

};

 };

[image: image155.wmf];

r

C

N

=

[image: image156.wmf]);

(mod

R

r

S

C

NR

+

=

 *

[image: image157.wmf]NR

N

C

C

output

,

:

Note that
[image: image158.wmf]Q

N

 comes along with the operation of
[image: image159.wmf]C

N

N

(

mod

)

, that is when
[image: image160.wmf]C

N

N

(

mod

)

 is computed, a residue and a quotient can be obtained simultaneously. The rows maked by “
[image: image161.wmf]*

” are additional computations needed for computing
[image: image162.wmf]C

NR

. The computational complexity of the proposed algorithm for modular exponentiation
[image: image163.wmf]C

M

N

N

d

=

(mod

)

 is
[image: image164.wmf]3

5

.

1

l

 bit operations. In finding
[image: image165.wmf]C

M

R

NR

d

=

(

mod

)

, more
[image: image166.wmf]l

k

2

4

 bit operations will be needed. Thus, the algorithm needs
[image: image167.wmf]l

k

l

2

3

4

5

.

1

+

 bit operations to derive
[image: image168.wmf]C

N

 and
[image: image169.wmf]C

NR

 simultaneously. Here we ignor the time on the computations of modular addition, substraction and reduction. If
[image: image170.wmf]k

l

<

<

 then it is very efficient in computation, and the computation will be speeded up further if the CRT method is applied.

4.6 An efficient approach for modulo R

If we choose a specific value for R such as
[image: image171.wmf]R

k

=

±

2

1

, then an efficient algorithm to speed up the modular operation for
[image: image172.wmf]C

A

R

=

(mod

)

 is as follows.

For
[image: image173.wmf]1

2

±

=

k

R

, the logarithm magnitude of A be l. Then A can be represented as

[image: image174.wmf]A

a

a

a

a

t

t

k

t

t

k

k

=

+

+

+

+

-

-

-

-

1

1

2

2

1

0

2

2

2

(

)

(

)

.

.

.

 , for
[image: image175.wmf]0

2

£

<

a

i

k

 and
[image: image176.wmf]0

1

£

£

-

i

t

,
(7)

where
[image: image177.wmf]t

l

k

=

/

,
[image: image178.wmf] denotes a ceiling function. Then C can be computed by

[image: image179.wmf]å

-

=

=

1

0

)

(mod

)

1

(

t

i

i

i

R

a

C

m

.
(8)

Thus the computational complexity for the modular computation of
[image: image180.wmf]C

A

R

=

(mod

)

 can be significantly reduced. By repeatedly performing the processes, the modular exponentiation such as
[image: image181.wmf]C

M

R

R

d

=

(mod

)

 for checking information can be quickly obtained by the checking system.

5. The Proposed Self-Checking Cryptosystems
Based on the proposed self-checking system, the modular exponentiation based cryptosystem can be modified to resist the computational fault attacks. The modified cryptosystem with checking computation capability is called self-checking cryptosystem. For an ideal self-checking cryptosystem, it must have the following properties:

(1) The computational overhead should be very small.

(2) The checking ability must be independent of computational faults, i.e. they should be able to detect any computational fault.

(3) The probability that faults cannot be detected should be small.

Based on the above properties, we propose three self-checking cryptosystems for RSA to resist the computational fault attacks. The proposed self-checking cryptosystem can also be used on other public-key cryptoschemes which are based on modular exponentiations. Here, we assume that there is no memory fault existed in the cryptographic computations. Without loss of generality, we only describe the RSA digital signature cryptosystem. The following schemes will output the exact corresponding output
[image: image182.wmf]C

N

 if the computation is error-free, where

[image: image183.wmf]C

M

N

N

d

=

(

mod

)

.
(9)

5.1 Scheme 1

This is a basic self-checking cryptosystem to resist fault-based attack. According to the self-checking system, the functional system outputs
[image: image184.wmf]C

M

N

N

d

=

(

mod

)

 and
[image: image185.wmf]C

M

m

R

NR

d

=

(

od

)

 by using Algorithm NR. On the other hand, the checking system computes
[image: image186.wmf]C

M

R

R

R

d

R

=

(

mod

)

 by using the algorithm proposed in Section 4.6, where
[image: image187.wmf]d

d

R

R

=

(

mod

(

)

)

f

 and
[image: image188.wmf]M

M

R

R

=

(mod

)

. Finally, the system outputs
[image: image189.wmf]C

N

 if
[image: image190.wmf]C

R

 is equal to
[image: image191.wmf]C

NR

. Otherwise, the system outputs nothing but an alarm.

Since
[image: image192.wmf]C

R

 and
[image: image193.wmf]C

NR

 are computed through different algorithms with the same sealed private key d,
[image: image194.wmf]C

R

 must be equal to
[image: image195.wmf]C

NR

 if the private key d is error-free and no other error occurred during cryptographic computation.

5.2 Scheme 2 (CRT-based and without checking system)

In CRT,
[image: image196.wmf]C

N

 is computed through two partial computations with different moduli. Let

[image: image197.wmf]C

M

pR

d

1

1

=

(

mod

)

,
(10)

[image: image198.wmf]C

M

qR

d

2

2

=

(

)

mod

,
(11)

where
[image: image199.wmf]d

d

pR

1

=

(

mod

(

)

)

f

 and
[image: image200.wmf]d

d

qR

2

=

(

mod

(

)

)

f

.

If
[image: image201.wmf])

(mod

)

(mod

2

1

R

C

R

C

=

 then the system computes and outputs
[image: image202.wmf]C

crt

N

p

q

C

C

N

=

(

,

,

,

,

)

1

2

. Otherwise, the system outputs nothing. Note that in this scheme, the checking system and the computation of
[image: image203.wmf]C

NR

 in functional system are omitted.

Theorem 1. In Scheme 2, if no memory fault or computational fault occurred, then
[image: image204.wmf])

(mod

)

(mod

2

1

R

C

R

C

=

 and
[image: image205.wmf]C

crt

N

p

q

C

C

N

=

(

,

,

,

,

)

1

2

 is equal to
[image: image206.wmf]M

N

d

(mod

)

.

Proof:
(1) It is obvious that
[image: image207.wmf](

(

mod

)

)

(

mod

)

(

mod

)

a

bc

c

a

c

=

. Then
[image: image208.wmf]M

R

d

(

mod

)

[image: image209.wmf]=

=

=

(

(

mod

)

)

(

mod

)

(

(

mod

)

)

(

mod

)

(

mod

)

(

mod

(

)

)

M

pR

R

M

pR

R

C

R

d

d

pR

f

1

. Similarly,
[image: image210.wmf]M

R

C

R

d

(

mod

)

(

mod

)

=

2

. Hence
[image: image211.wmf])

(mod

)

(mod

2

1

R

C

R

C

=

. (2) Since
[image: image212.wmf])

(mod

1

p

C

[image: image213.wmf])

(mod

)

)(mod

mod

(

1

1

p

M

p

pR

M

d

d

=

=

, and
[image: image214.wmf]d

p

1

mod

(

)

f

=

EMBED Equation.3[image: image215.wmf](

(

mod

(

)

)

)

d

pR

f

[image: image216.wmf]mod

(

)

f

p

[image: image217.wmf]=

d

p

mod

(

)

f

. Hence
[image: image218.wmf]C

p

M

p

d

1

(

mod

)

(

mod

)

=

. Similarly,
[image: image219.wmf]C

q

2

(

mod

)

=

[image: image220.wmf]M

q

d

(

mod

)

. Therefore,
[image: image221.wmf]C

crt

N

p

q

C

C

N

=

(

,

,

,

,

)

1

2

 is the exact solution for
[image: image222.wmf]M

N

d

(mod

)

.
 Q.E.D.

5.3 Scheme 3 (CRT-based and with checking system)

Based on the self-checking system, the functional system computes
[image: image223.wmf]C

M

p

p

d

pR

=

(mod

)

 and
[image: image224.wmf]C

M

R

pR

d

pR

=

(

mod

)

,
[image: image225.wmf]C

M

q

q

d

qR

=

(mod

)

 and
[image: image226.wmf]C

M

R

qR

d

qR

=

(

mod

)

 by Algorithm NR. Where
[image: image227.wmf]d

d

p

R

pR

=

mod(

(

)

(

))

f

f

 and
[image: image228.wmf]d

d

q

R

qR

=

mod(

(

)

(

))

f

f

.

Since
[image: image229.wmf])

(

)))(mod

(

)

(

(mod(

))

(

(mod

p

R

p

d

p

d

f

f

f

f

=

,
[image: image230.wmf])

(mod

p

M

d

EMBED Equation.3[image: image231.wmf]))

(

(mod

p

d

M

f

=

[image: image232.wmf](

mod

)

p

EMBED Equation.3[image: image233.wmf]=

=

=

M

p

M

p

C

d

p

R

d

p

pR

(

mod

(

(

)

(

)

)

)

(

mod

)

(

mod

)

f

f

, and
[image: image234.wmf]d

R

M

C

=

[image: image235.wmf])

(mod

R

[image: image236.wmf]=

M

d

p

R

(

mod

(

(

)

(

)

)

)

f

f

EMBED Equation.3[image: image237.wmf](

mod

)

(

mod

)

R

M

R

C

d

pR

pR

=

=

. Similarly,
[image: image238.wmf])

(mod

q

M

d

EMBED Equation.3[image: image239.wmf]q

C

=

 and
[image: image240.wmf]C

M

R

C

R

d

qR

=

=

(

mod

)

. Hence, if no error existed, then
[image: image241.wmf]C

C

pR

R

=

 and
[image: image242.wmf]C

C

qR

R

=

. Therefore, if
[image: image243.wmf]C

C

pR

qR

=

 then the system is error-free, and the system computes and outputs
[image: image244.wmf]C

N

 by using the CRT, i.e.,
[image: image245.wmf]C

crt

N

p

q

C

C

N

p

q

=

(

,

,

,

,

)

. Otherwise, if
[image: image246.wmf]C

C

pR

qR

¹

 then the system outputs nothing but an alarm.

6. Discussions
6.1 Probability of fault detection failure and security analysis

If two checking informations in self-checking cryptosystem are the same while errors still occurred, then the schemes will fail. Obviously, the probability in this case is 1/R. If we choose
[image: image247.wmf]R

=

±

@

´

2

1

5

10

32

9

 then the probability that faults cannot be detected is very small. Moreover, in this case, the computation can be speed up further.

For Algorithm NR, if error occurred in computation of
[image: image248.wmf]2

r

C

N

=

 or
[image: image249.wmf]rM

C

N

=

 then the results
[image: image250.wmf]C

N

 and
[image: image251.wmf]C

NR

 will be faulty. Since the checking system computes
[image: image252.wmf]C

R

 independently, there is very high probability for
[image: image253.wmf]R

NR

C

C

¹

. Therefore, the faulty will be detected. On the other hand, if there is error occurred in computation of
[image: image254.wmf])

(mod

2

2

R

N

Q

Sr

S

S

N

×

+

+

=

 or
[image: image255.wmf])

(mod

R

N

Q

SM

S

N

×

+

=

, then
[image: image256.wmf]C

NR

 will be faulty. In this case, the faulty will also be detected since
[image: image257.wmf]R

NR

C

C

¹

.

Since the proposed methods only add checking computation in original schemes and the immediate checking message does not be revealed, the proposed schemes reveal no more information than the original ones. Thus the attackers cannot obtain more message from the proposed schemes. Therefore, the security of the proposed schemes is the same as that of original RSA.

6.2 Computational complexity

Suppose that
[image: image258.wmf]p

q

N

d

l

=

=

=

=

1

2

1

2

2

 and
[image: image259.wmf]R

k

=

, where
[image: image260.wmf]x

 denotes the logarithm magnitude of x. The performance of the above three schemes is shown in Table I, where the method proposed in Section 4.6 has not been applied. Thus if that method is used then the computation will be speed up further. The bit operations of the original schemes for Scheme 2 and 3 are CRT-based. In general, it needs
[image: image261.wmf]0

375

3

.

l

 bit operations to compute
[image: image262.wmf]C

M

N

d

=

(

mod

)

with CRT. It is shown that all our proposed schemes have good performance. Among them, Scheme 1 is the most efficient algorithm on the consideration of computational overhead. Here, we assume that
[image: image263.wmf]k

l

=

32

, which is a reasonable assumption since
[image: image264.wmf]l

=

1024

 satisfies the general security consideration.

Since the length of public key for the RSA cryptosystem is always as small as 16 bits, the performance of the proposed schemes seems not very impressive. However, for some cryptosystems with larger exponentiation such as the Diffie-Hellman key distribution scheme [8] and the Digital Signature Algorithm (DSA) [14], our methods have high performance in computation.

 Table I. The performance of the proposed schemes

Scheme
Computation

formula
Complexity

(bit operations)
Total computations

(bit operations)
Computational overhead

[image: image265.wmf])

(mod

N

M

C

d

N

=

[image: image266.wmf]3

5

.

1

l

1

[image: image267.wmf])

(mod

R

M

C

d

NR

=

[image: image268.wmf]l

k

2

4

[image: image269.wmf]3

504

.

1

l

0.3%

[image: image270.wmf])

(mod

R

M

C

R

d

R

R

=

[image: image271.wmf]3

5

.

1

k

2

[image: image272.wmf])

(mod

1

1

pR

M

C

d

=

[image: image273.wmf]3

)

2

(

5

.

1

l

k

+

[image: image274.wmf]3

450

.

0

l

20.0%

[image: image275.wmf])

(mod

2

2

qR

M

C

d

=

[image: image276.wmf]3

)

2

(

5

.

1

l

k

+

[image: image277.wmf])

(mod

p

M

C

pR

d

p

=

[image: image278.wmf]2

)

2

)(

2

(

5

.

1

l

l

k

+

3

[image: image279.wmf])

(mod

R

M

C

pR

d

pR

=

[image: image280.wmf])

4

)(

2

(

2

k

l

k

+

[image: image281.wmf]3

403

.

0

l

7.5%

[image: image282.wmf])

(mod

q

M

C

qR

d

q

=

[image: image283.wmf]2

)

2

)(

2

(

5

.

1

l

l

k

+

[image: image284.wmf])

(mod

R

M

C

qR

d

qR

=

[image: image285.wmf])

4

)(

2

(

2

k

l

k

+

7. Conclusions
In some security models such as electronic commerce, the protection for the secret information in a tamperproof device (e.g., smart card) is very important. However, it is shown that the secret keys can always be revealed by using transient faults in many public-key cryptosystems. In this paper, we discuss the classification of faults from the sources of the security breaches, and propose a model of self-checking system to resist computational fault-based attacks. The proposed methods can also be applied to other public-key cryptosystems whose algorithm is based on modular multiplication operations such as the Diffie-Hellman, DSA, ElGamal, Schnorr schemes and so on [8,9,14,16]. The proposed fault-resistant systems have high performance in computation and error detection.

8. References
[1]
R. Anderson, "Why cryptosystems fail," Communication of the ACM, Vol.37, No.11, pp.32-40, Nov. 1994.

[2]
R. Anderson and M. Kuhn, "Tamper resistance -- a cautionary note," Proceedings of the second USENIX Workshop on Electronic Commerce, pp.1-11, 1996.

[3]
F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D. Narasimhalu and T. Ngair, "Breaking public key cryptosystems on tamper resistant device in the presence of transient faults," 1997 Security Protocols Workshop, Springer-Verlag, pp.115-124, Paris, France, April 1997.

[4]
E. Biham and A. Shamir, "Differential fault analysis of secret key cryptosystems," CRYPTO '97, LNCS 1294, Springer-Verlag, pp.513-525, 1997.

[5]
M. Blaze, "Protocol failure in the escrowed encryption standard," Proc. of the 2nd ACM conference on Computer and Communications Security, ACM Press, pp.59-67. 1994.

[6]
D. Boneh, R.A. DeMillo and R.J. Lipton, "On the importance of checking cryptographic protocol for faults," EUROCRYPT '97, LNCS 1233, Springer-Verlag, pp.37-51, 1997.

[7]
J. Bos and M. Coster, "Addition chain heuristics," Advances in Cryptography, Crypto'89. LNCS 435, Springer-Verlag, pp.400-407, 1990.

[8]
W. Diffie and M.E. Hellman, "New directions in cryptography," IEEE Transactions on Information Theory, Vol.IT-22, pp.644-654, 1979.

[9]
T. ElGamal, "A public-key cryptosystem and a signature scheme based on discrete logarithm," IEEE Transactions on Information Theory, Vol.IT-31, No.4, pp.469-472, 1985.

[10]
U. Feige, A. Fiat, and A. Shamir, "Zero knowledge proofs of identity," Journal of Cryptology, Vol.1, No.2, pp.77-94, 1988, .

[11]
M. Joye, A.K. Lenstra and J-J Quisquater, "Chinese remaindering based cryptosystems in the presence of faults," to appear in Journal of Cryptology.

[12]
D.E. Knuth, The art of computer programming, Vol. II: Seminumerical algorithms. Addison-Wesley, 1969.

[13]Chi-Sung Laih, Fu-Kuan Tu and Yung-Cheng Lee, "On the implementation of public key cryptosystems against fault-based attack," IEICE Transactions on Fundamental of Electronics, Communications and Computer Science, Vol.E82-A, No.6, pp.1082-1089, 1999.

[14]
National Institute of Standards and Technology, "A proposed federal information processing standard for digital signature standard (DSS)," Federal Register, Vol.56, No.169, pp.42980-42982, August 31, 1991.

[15]
T.R.N. Rao and E. Fujiware, Error-control coding for computer systems, Prentice Hall, pp. 389-409, 1989.

[16]
C. P. Schnorr, "Efficient signature generation by smart cards," Journal of Cryptology, Vol.4, No.3, pp.161-174, 1991.

� EMBED Equation.3 ���

- 12 -
- 1 -

[image: image286.wmf]_964372005

_966092668

_966094705

_995896017

_996234681

_996253288.unknown

_996253784

_996254344

_996647008.unknown

_996254329

_996253393

_996253217.unknown

_996253275.unknown

_996234897

_995896021

_995896023

_995896025

_995897302

_995896024

_995896022

_995896019

_995896020

_966411426

_995896012

_995896015

_995896016

_995896013

_995896001

_995896002

_966411656.unknown

_966512675

_966411699.unknown

_966411485

_966256170

_966256650.unknown

_966411161

_966411312

_966256717

_966257255

_966256429

_966256633

_966256337

_966094794

_966094934.unknown

_966095001

_966172159.unknown

_966094904

_966094730

_966092686

_966092699

_966092707

_966092720.unknown

_966092814.unknown

_966092828

_966092724.unknown

_966092727.unknown

_966092807

_966092725.unknown

_966092722.unknown

_966092715.unknown

_966092718.unknown

_966092719.unknown

_966092716.unknown

_966092709

_966092714.unknown

_966092708

_966092703

_966092705

_966092706

_966092704

_966092701

_966092702

_966092700

_966092694

_966092696

_966092697

_966092695

_966092689

_966092690

_966092688

_966092677

_966092681

_966092684

_966092685

_966092683

_966092679

_966092680

_966092678

_966092672

_966092675

_966092676

_966092673

_966092670

_966092671

_966092669

_964372043

_966092643

_966092657

_966092664

_966092666

_966092667

_966092665

_966092661

_966092662

_966092660

_966092658

_966092659

_966092650

_966092652

_966092655

_966092651

_966092647

_966092648

_966092644

_964436820

_965732084

_965830520

_965830766.unknown

_966092639

_966092640

_965830796.unknown

_965830820.unknown

_966092638

_965830809.unknown

_965830780.unknown

_965830669.unknown

_965830721

_965830656

_965732087

_965732088

_965830425.unknown

_965732086

_964437613.unknown

_964437646

_964437845.unknown

_964439310.unknown

_964437859.unknown

_964437706

_964437635

_964437503

_964437523

_964437580

_964437097

_964372053

_964372064

_964372068

_964372070

_964372072

_964372073

_964372071

_964372069

_964372066

_964372067

_964372065

_964372060

_964372062

_964372063

_964372061

_964372057

_964372059

_964372056

_964372047

_964372049

_964372052

_964372048

_964372045

_964372046

_964372044

_964372023

_964372034

_964372039

_964372041

_964372042

_964372040

_964372037

_964372038

_964372035

_964372028

_964372030

_964372031

_964372029

_964372026

_964372027

_964372024

_964372013

_964372018

_964372020

_964372021

_964372019

_964372015

_964372017

_964372014

_964372012

_964372007

_964372009.unknown

_964372010

_964372011

_964372008

_964372006

_964371873

_964371981

_964371992

_964372000

_964372003

_964372004

_964372002

_964371994

_964371999

_964371993

_964371987

_964371990

_964371991

_964371988

_964371985

_964371986

_964371984.unknown

_964371883

_964371966

_964371969

_964371979

_964371968

_964371887

_964371888

_964371884

_964371878

_964371881

_964371882

_964371880

_964371875

_964371876

_964371874

_964371855

_964371864

_964371868

_964371871

_964371872

_964371869

_964371866

_964371867

_964371865

_964371860

_964371862

_964371863

_964371861

_964371857

_964371859

_964371856

_964371841

_964371845

_964371847

_964371848

_964371846

_964371843

_964371844

_964371842

_964364342.unknown

_964371837

_964371839

_964371840

_964371838

_964371835

_964371836

_964371833

_964364745.unknown

_964363797.unknown

_964364072.unknown

_964364123.unknown

_964364172.unknown

_964364105.unknown

_964363914.unknown

_964363932.unknown

_964363955.unknown

_964363876.unknown

_964363738.unknown

_964363760.unknown

_964363662.unknown

