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Abstract
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 threshold signature, first proposed by Desmedt and Frankel, allows 
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 or more members of the group cooperate to generate a signature on behalf of the group while providing the anonymity of the signers. Unfortunately, all 
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 threshold signature schemes proposed so far can not withstand the conspiracy attack, thus the group secret key can be revealed. In this paper, we propose a new 
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 threshold signature scheme to avoid the conspiracy attack. The security of the proposed threshold signature scheme is based on the difficulty of computing the discrete logarithm modulo for a composite number. The size of the group signature and the verification time of the group signature are equivalent to that of an individual signature.
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1. Introduction

In the conventional digital signatures such as RSA [8] and ElGamal [2], a single signer is sufficient to sign a message and any verifier can verify the validity of the signature with the signer’s public key. However, the responsibility of signing messages for many applications needs to be shared by a set of signers. It is a policy for some applications and occasions that at least 
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 persons rather than one person generate cooperatively a signature. The multi-signature schemes [3,7], the 
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 threshold signature schemes [1,3] and the 
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 threshold multi-signature schemes [5,10] were proposed for slightly different concepts. In these schemes, it is required that several signers cooperate to generate a valid group signature for a message on behalf of the group.

Here, we briefly describe the concept and requirements of various group-oriented signature schemes. In a multi-signature scheme [3,7], several signers can generate a signature for a message, any verifier may check the validity of the multi-signature with the public keys of the signers. In threshold multi-signature schemes [5,10], 
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 or more members in the group can cooperate to generate a valid group signature on behalf of the group. One verifier is sufficient to verify a given a given signature and the verifier needs the public keys of the signers for verification. In the above schemes [3,5,7,10], the signers are not anonymous. Finally, the 
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 threshold signature scheme has the feature that 
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 or more members of the group can cooperate to generate a valid group signature on behalf of the group. And the verifier can check the validity of the group signature without identifying the identities of the signers. That is, the signers are anonymous.

In 1991, Desmedt and Frankel [1] first proposed the concept of a 
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 threshold signature scheme based on the RSA system [8]. In this scheme, a mutually trusted center determines the group’s secret key and the secret keys of all group members. However, the proposed signature scheme would be broken if any 
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 or more group members conspire together with each other. This weakness was presented by Li et al. [4]. Moreover, Harn [3] employed Lagrange interpolating polynomials and the ElGamal signature scheme [2] to construct two 
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 threshold signature schemes. One is a threshold signature scheme with the assistance of a mutually trusted center. Another threshold signature scheme was also proposed in which the mutually trusted center is no longer used.

Unfortunately, these schemes proposed in the literature [1,3] suffer from the conspiracy attack and the group’s secret keys can be revealed [4,5]. To avoid the conspiracy attacks, Li et al. [5] proposed two new 
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 threshold signature scheme with traceable signers. The proposed schemes attach a random number to the secret key held by each member, then the security of their schemes is guaranteed. Meanwhile, the additional random number makes the 
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 threshold signature schemes have the property of traceability. However, Michels and Horster [6] pointed out that Li et al.’s threshold multi-signature scheme is vulnerable to forgery attack by an insider attacker under reasonable assumptions. The signer can not make sure who his co-signers are. The weakness violates the property of traceability. In 1998, Wang et al. [10] proposed two new 
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 threshold signature schemes with traceable signers that can withstand conspiracy attacks without attaching a secret number. Recently, Tseng and Jan [9] have shown that the proposed schemes are insecure by presenting a forgery attack on them.

Michels and Horster also presented another forgery attack on the threshold signature schemes proposed by Harn. The forgery attack is that an insider attack 
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 wants to his victims, the signers 
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 with him. They reject, but agree to sign the innocent message 
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 with him. The insider attack 
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, who colludes with the designated clerk can forge the valid signature for message 
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From the above descriptions, Desmedt and Frankel’s 
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 threshold signature scheme can not withstand the conspiracy attack. Harn’s 
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 threshold signature schemes can also not withstand the conspiracy attack and the forgery attack presented by Michels and Horster. Therefore, the previously proposed 
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 threshold signature schemes were not secure against the conspiracy attack. In the paper, we will propose a new 
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 threshold signature scheme. Under the difficulty of computing the discrete logarithm modulo for a composite number, the proposed scheme is secure against the conspiracy attack and the forgery attack.

2. Our scheme

In this section, we present a new 
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 threshold signature scheme with the assistance of a mutually trusted center. The scheme consists of three phases: the system initiation phase, the threshold signature generation phase, and the threshold signature verification phase. We describe the three phases in details as follows:

[System Initialization Phase] The system contains a mutually trusted center, who is responsible for selecting all parameters. Assume that there are 
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 be the set of all group members. Any 
[image: image30.wmf]t

 or more members in the group can sign a message on behalf of the group, let 
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[Threshold signature generation phase] Without loss of generality, assume that there are 
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The user 
[image: image98.wmf]i

U

 sends 
[image: image99.wmf]}

,

{

i

i

s

r

 to a designated clerk, who takes the responsibility of collecting the partial signatures. Besides, the clerk may authenticate the partial signatures by verifying the following equation 
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If the equation holds, the partial signature 
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Theorem 1: If 
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 holds, then the partial signature 
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Further, the clerk computes the group signature 
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[Threshold signature verification phase] Any verifier can use the group public key 
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Proof: In the second phase, the individual signature 
[image: image122.wmf]}

,

{

i

i

s

r

 of the message 
[image: image123.wmf]m

 satisfies the following equation


[image: image124.wmf]N

r

y

s

i

ID

ID

ID

R

m

h

i

e

i

B

j

A

j

i

j

B

j

j

j

i

mod

)

(

,

,

)

0

(

)

(

)

,

(

×

Õ

Õ

=

Ï

Î

¹

Î

-

×

-

×

. 

Since 
[image: image125.wmf]N

r

R

B

i

i

mod

Õ

Î

=

 and 
[image: image126.wmf]N

s

S

B

i

i

mod

Õ

Î

=

, we have   


[image: image127.wmf]N

s

S

e

B

i

i

e

mod

)

(

Õ

Î

º



[image: image128.wmf]N

r

y

B

i

i

ID

ID

ID

R

m

h

i

B

j

A

j

i

j

B

j

j

j

i

mod

)

(

,

,

)

0

(

)

(

)

,

(

Õ

Î

-

×

-

×

×

Õ

Õ

º

Ï

Î

¹

Î



[image: image129.wmf]N

r

g

B

i

B

i

i

ID

ID

ID

R

m

h

ID

ID

ID

f

B

j

A

j

i

j

B

j

j

j

i

i

j

A

j

j

i

i

mod

)

(

,

,

,

1

)

0

(

)

(

)

,

(

)

(

)

(

Õ

Õ

Î

Î

-

×

-

×

-

×

×

Õ

Õ

Õ

º

Ï

Î

¹

Î

¹

Î

-



[image: image130.wmf]N

R

g

B

i

ID

ID

ID

R

m

h

ID

ID

ID

f

B

j

A

j

i

j

B

j

j

j

i

i

j

A

j

j

i

i

mod

)

(

,

,

,

1

)

0

(

)

(

)

,

(

)

(

)

(

Õ

Î

-

×

-

×

-

×

×

Õ

Õ

Õ

º

Ï

Î

¹

Î

¹

Î

-



[image: image131.wmf]N

R

g

B

i

ID

ID

ID

ID

f

R

m

h

i

j

B

j

i

j

B

j

j

j

i

i

mod

)

(

,

,

1

)

0

(

)

(

)

(

)

,

(

Õ

Î

-

×

-

×

×

×

Õ

Õ

º

¹

Î

¹

Î

-

         


[image: image132.wmf]N

R

g

B

i

i

j

B

j

i

j

B

j

j

j

i

i

ID

ID

ID

ID

f

R

m

h

mod

,

,

1

)

)

0

(

)

(

)

(

(

)

,

(

×

å

Õ

Õ

º

Î

¹

Î

¹

Î

-

-

×

-

×

×


According to the reconstructed relation of the polynomial 
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As stated in the above Theorem, the verifier will believe that the group signature 
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3. Security analysis

In the following, some possible attacks against the proposed scheme are presented. As we can see, none of these attacks can break our proposed scheme.

Attack 1: An adversary tries to reveal the group secret key 
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Attack 3: The signer 
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In Michels and Horster’s forgery attack on Harn’s schemes, the signer 
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 with him. In our scheme, since the partial signature is 
[image: image170.wmf]N

g

x

s

i

B

j

A

j

i

j

B

j

j

j

i

k

ID

ID

ID

R

m

h

i

i

mod

)

(

,

,

)

0

(

)

(

)

,

(

×

Õ

Õ

=

Ï

Î

¹

Î

-

×

-

×

 and the message 
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. Thus, our scheme can withstand the forgery attack.

Attack 4: The designated clerk and an adversary may try to reveal the member’s secret key 
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Since the modulus 
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 is chosen to be infeasible to factor, specialized attacks applicable to the RSA scheme are ineffective, e.g., it is infeasible to find 
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Attack 5: A receiver tries to determine the identities of the signers from the group signature.

A receiver only knows the group signature 
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4. Discussions

As stated in the previous section, our scheme is secure against the Li et al.’s conspiracy attack [4,5] and the Michels and Horster’s forgery attack [6]. In the following, let us discuss the responsibility of the designated clerk as well as the signer’s anonymity. 

In the Desmedt and Frankel’s scheme [1], each group member 
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 without another public key 
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. Thus, the designated clerk may only takes the responsibility of collecting the partial signatures and can not authenticate the partial signatures. If the designated clerk is one of the signers, he certainly knows the identities of the other signers. Otherwise, the designated clerk can not know the identities of the signers. 

In the Harn’s scheme [3], each group member 
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 has two public keys 
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 and 
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. After receiving the partial signature, the designated clerk may use each member’s public keys to authenticate the partial signature. Although the designated clerk is not one of the signers, he also knows the identities of all signers. Note that if the designated clerk reveals the identities of all signers, it violates the property of anonymity. 

Therefore, two approaches in the Desmedt and Frankel’s scheme and the Harn’s scheme are alternative. As described in Section 2, our scheme adopts the approach in the Harn’s scheme. However, our proposed scheme may also be designed as the approach in the Desmedt and Frankel’s scheme. It is not required that the mutually trusted center publishes each member’s public key 
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. Thus, the designated clerk can not authenticate the partial signature and can not know the identities of the signers.

Let us consider the performance of our proposed scheme. The performance evaluation of the proposed scheme concerns the size of the group signature and the time complexity for verifying the group signature. Both the sizes of the group signature 
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 is the bit-string length. As for the time complexity for verifying the group signature, two modular exponentiations are required. That is, the group signature verification process is simplified because there is only one group public key required.

5. Conclusions

We have proposed a new 
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 threshold signature scheme that it is secure enough against the conspiracy attack and the forgery attack. We have demonstrated that the group signature verification process is simplified and the group signature’s size is equivalent to an individual signature’s size. Therefore, the proposed scheme is proved to be secure and efficient. 
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