IICM 第二卷 第三期 民國八十八年九月
 Designing Authentication Protocols against Guessing Attacks

Designing Authentication Protocols against Guessing Attacks
Wen-Her Yang, Ji-Chiang Shen, and Shiuh-Pyng Shieh

楊文和、沈自強、謝續平
Department of Computer Science and Information Engineering

National Chiao Tung University

Email: ssp@csie.nctu.edu.tw
Abstract

Users are normally authenticated via their passwords in security systems. Since people are used to choose easy-to-remember passwords, the systems suffer from guessing attacks. There are many authentication protocols proposed to resist guessing attacks. However, some limitations exist in these protocols, such as confined in specific environments, or requiring high computation and communication costs. In the paper, the common forms of guessing attacks are specified, which are practical for detecting the vulnerability of guessing attacks in authentication protocols. Then, we propose two practical authentication and key distribution protocols, which are all resistant to guessing attacks.

1. Introduction

Identifying users is an indispensable element of computer security. Even though auxiliary devices such as smart-cards are used as the aid of identification, users are usually authenticated through their passwords. In general computer systems, users are allowed to choose their own passwords. Unfortunately, people tend to choose passwords that can be easily remembered [Morris79]. These easy-to-remember passwords are vulnerable to attacks named "Guessing Attacks". A malicious attacker can try to guess the user passwords and get a verification of that guess. The guessing attacks is also named "Dictionary Attacks", since attackers often use the words in the dictionary to guess the passwords of users. Forcing people to choose and remember good passwords (those that tend to be long character strings including Roman letters, digits and special characters) is infeasible because such well-chosen passwords are quite unmemorable.

We use the term “poorly chosen” to describe an encryption key derived from a user-chosen password, while we use the term “well-chosen” to describe an encryption key chosen at random from a large key space. The “poorly chosen passwords” is the target that the attackers have interests in. The guessing attacks can be classified into two categories:

1. On-line guessing attacks: An attacker tries to use guessed passwords iteratively to pass the verification of computer systems in on-line manners. This kind of attacks is performed by replaying eavesdropped messages or impersonating other clients. Unless a protocol provides a server with sufficient information to detect the authentication failure, the server cannot notice the attack.
2. Off-line guessing attacks: An attacker eavesdrops messages and stores them locally. After analyzing the communication protocol, if he can find out some rules or relationships about the poorly chosen passwords among the components of the protocol, he can guess the password and tries iteratively to verify whether the guess is correct or not through the relationships in off-line manners. There is no need that a server should participate in verification, and so the server cannot notice the attack.

What we focus is off-line guessing attacks, since the servers in most security systems can collect enough information to detect the on-line guessing attacks. The off-line guessing attacks are most effective when a large number of guesses can be made automatically, and each guess is verified to check whether it is correct. An attacker can guess the passwords based on all of the words in a machine-readable dictionary. With the development of the semiconductor technology, the speed of computer is increasing quickly. This leads the CPU times of both a guess and the verification of the guess are decreased, then the probability of success of the off-line guessing attack is increased.

From now on, when we mention guessing attacks without special notice, it means the “off-line guessing attacks” and the problem we want to solve is to improve the security of the system such that poorly chosen passwords cannot make the system vulnerable to guessing attacks. Many existent authentication protocols such as Kerberos [Kohl94], SNP [Shieh96], Needham-Schoreder Shared key protocol [Needham78], Otway-Rees protocol [Otway78] and Neuman-Stubblebine protocol [Neuman79] are vulnerable to off-line guessing attacks. And many enhanced authentication protocols have been proposed to resist password-guessing attacks [Bellovin92, Gong92, Gong95, Keung95, Kwon97], but they are either confined to operate in specific environment, or more expensive in terms of the computation and communication costs than the protocols which suffer from guessing attacks.

This paper is organized as follows. In section 2, we survey some related work about authentication and key distribution protocols resistant to off-line guessing attacks. In section 3, the common forms of guessing attacks are specified, which can be used to detect whether a protocol is vulnerable to guessing attacks. Then, we propose two practical authentication and key distribution protocols to resist the guessing attacks in section 4. The performance and security analysis of proposed protocols is provided in section 5. And the last section gives a conclusion.
2. Related Work

Many existing authentication or key distribution protocols [Bellovin92, Gong93, Gong95, Keung95, Kwon97] have been proposed to resist to off-line guessing attacks. We group them into two models according to their principals of communications. One is the two-parties model. In this model, there are two communication principals which share a common secret. The two communication principals use the common secret to authenticate each other and negotiate a session key. The well-known protocols in this model are EKE [Bellovin92] (encrypted Key Exchange) protocol and its variants. The other is the trusted third-party model. In this model, all principals trust an authentication or key distribution server, and share their own secrets with the server only. Many protocols such as [Gong93, Keung95, Kwon97] and our proposed protocols are all based on this model. For convenient sake, the following notations are used to describe the protocols in this paper.

A
 System principal A (Alice)

B
 System principal B (Bob)

S
 Trusted Server

AB: m
 A sending a message m to B

m,n
 Concatenation of message m and n

Ka, Kb
 Passwords of A and B

K
 Session key between A and B

Ks
 Public key of the Trusted Server

{m}k
 Encrypt m using key k

[m]k
 Decrypt m using key k


 Bit-wise exclusive-or operation (XOR)

Table 2.1: The common notations

2.1
The Two-Parties Model

In order to prevent guessing attacks, Bellovin and Merritt proposes an elegant protocol [Bellovin92] which is called Encrypted Key Exchange (EKE). They also develop several protocol variants based on different underlying cryptosystems, e.g., RSA [Rivest78], El-Gamal [ElGamal85], and Diffie-Hellman [Diffie76]. The generic EKE protocol is susceptible to Denning-Sacco Attack [Denning81]. The attacker somehow obtains one of the session keys distributed in one run of EKE protocol. Armed with that knowledge, the attacker can mount a guessing attack on the password and, break the password. There is a variant of EKE [Bellovin92], Exponential Key Exchange EKE, which are resistant to Denning-Sacco Attack. Its resistance is due largely to the fact that the key is never transmitted in any way. Instead, only residues are sent in encrypted form. However, the EKE has the limitation that the two participators must share a common secret before communication. This limitation restricts the EKE protocol to be used in many applications.

2.2
The Trusted Third-Party Model

Gong, Lomas, Needham, and saltzer propose a protocol [Gong93] of the trusted third-party model, which provides protection against guessing attacks. By introducing nonces and a confounder, the protocol is successful in generating a large search space for defending off-line password guessing attacks. Outside attackers have practically no clues about the message content encrypted by the password because it is made up of nonces and a random session key. Thus, attackers cannot decrypt any password-encrypted messages to look for anything recognizable, nor can they attempt to reconstruct a phony message and verify it with the legitimate one. Timestamps serve to guarantee message freshness; thus, replaying stale requests can only notify a server of an intrusion. This protocol is illustrated as follows, and we call it GLNS protocol.

1. AB: {A,B,na1,na2,na3,{ta}Ka}Ks ,ra

2. BS: {A,B,na1,na2,na3,{ta}Ka}Ks ,

{B,A,nb1,nb2,nb3,{tb}Ka}Ks
3. SB: {na1,K na2}Ka , {nb1,K nb2}Kb
4. BA: {na1,K na2}Ka , {ra+1,rb}K
5. AB: {rb+1}K
Figure 2-2 GLNS protocol
In this protocol, the confounder na3 prevents attackers from reconstructing an initial request. In case an attacker has successfully compromised all the nonces and the timestamp ta, nevertheless, he cannot guess the password Ka alone by reconstructing the initial request and checking for a match with the captured request. The principal A uses the nonce na1 to authenticate the server’s replay. The nonce na2 protects the session key K from being used as a tool for guessing Ka in case K is compromised. The timestamp ta is used to prevent any replay attacks.

In GLNS protocol, there is a constraint that the server must respond only to fresh requests that makes the nonce-based protocol require two more messages. Gong has proposed another protocol [Gong95] which reduce the amount of message transmissions and doesn’t need the timestamps. Tsudik and Van Herreweghen [Tsudik93] also have suggested some modifications to GLNS protocol. The modifications eliminate the requirement of timestamps by keeping the server stateless, and reduce the amount of encryption by using as few nonces as possible. Inspired by the protocols found in Gong [Gong93], Keung and Siu [Keung95] propose another protocol which is immune to both replay and off-line password guessing attacks. This protocol focuses on enlarging the search space to provide better security and minimizing the amount of encryption. Kwon, Kang and Song [Kwon97] also propose another protocol for mutual authentication and key distribution. This protocol applies the concept of one-time pad and one-way hash function to reduce computation overhead.

The weakness of these protocols mentioned above is that many random numbers and cryptographic operations are involved to counter guessing attacks. This weakness makes these protocols somewhat inefficient and impractical. And in these protocols, there is a common assumption that all the principals must know the public key of the trusted server before communication. In some case, it is infeasible for users to get the public key of the trusted server (e.g. mobile environments). In section 5, we will develop a more efficient authentication protocol which does not require the communication principals to know the public key of the trusted server.

3. Common Forms of Guessing Attacks

In this section, we specify four common forms of guessing attacks: “simple guessing attacks”, “cascade guessing attacks”, “insider guessing attacks” and “replay guessing attacks”. These common forms are very useful to diagnose whether a protocol is vulnerable to guessing attacks. For specifying the common forms, we present some authentication and key distribution protocols which all suffer from the guessing attacks.

3.1
Simple Guessing Attacks

As we know, the keys which might be guessed are the user-chosen passwords. In a protocol, if a message containing predicable information is encrypted with the poorly chosen key, this protocol is vulnerable to guessing attacks. We call the guessing attacks of this form "simple guessing attacks". Many existent protocols such as SNP (Secure Network Protocol) [Shieh96] and Needham-Schroeder secret key protocol [Needham78] are vulnerable to simple guessing attacks. The SNP protocol proposed by Shieh and Yang [Shieh96] is a typical nonce-based authentication and key distribution protocol for open network systems. We present the SNP protocol in Figure 3-1 as an example to illustrate the attacks of this form.

1. CS: C, {C, crand}Kc
2. SAS: S, {S, srand, C, {C, crand}Kc}Ks ,

3. ASS: {AS, Kss, (srand+1), {Kss,(crand+1)}Kc}Ks
4. SC: {Kss, (crand+1)}Kc
Figure 3-1 SNP protocol
In the SNP protocol, AS, C and S mean the authentication server, client, and server. And crand and srand are random numbers generated by the client and the server respectively. Ks is the shared secret between the server and Authentication Server (AS), and Kc is the shared secret between the client and AS. Here, Kc is the user-chosen password. Kss is the session key for the client and the server. We don’t explain the detail of this protocol, just explore the vulnerability of guessing attacks. In the message 1, the second part of this message is encrypted under the user-chosen password Kc. If an attacker eavesdrops this message, he can mount a guessing attack. Using the keys derived from a series of guesses as to the password Kc, the attacker can decrypt the second part of message 1 to get the name of client C. If this name is identical to the first part of message 1, he gets a correct guess. In more detail, the “simple guessing attack” is as follows:

· The attacker captures all messages of one run of the SNP protocol.
· The following steps are iterated until all possible candidates of password Kc are tested:

1. Pick a candidate
[image: image1.wmf]Kc

2. compute {
[image: image2.wmf]C

,

} = [{C, crand}Kc]

where {C, crand}Kc is the second part of message 1
3. compare
[image: image3.wmf]C

 with C where C is the first part of message 1
A match in the last step indicates a correct guess of the password.

3.2
Cascade Guessing Attacks

In order to prevent simple guessing attacks, The message encrypted with the user-chosen passwords should be sufficiently unpredictable to attackers. In this subsection, what we want to point out is this is not enough to prevent guessing attacks. Consider a case, an attacker eavesdrops all the protocol messages in communication. He can guess the message encrypted under the user-chosen password, but cannot directly verify whether his guess is correct in case this message is unpredictable. While if the attacker can find any relationship among all parts of the protocol messages, he can succeed to verify his guess based on the relationship. We present a typical trusted third-party and challenge-response protocol to demonstrate this form of guessing attacks, "cascade guessing attacks". In the demonstration protocol, a trusted host S serves as a mediator between the two clients A and B to achieve mutual authentication. The protocol is described in Figure 3-2.

1. AB: {A,B,na}Ks , ra

2. BS: {A,B,na}Ks , {B,A,nb}Ks
3. SB: {na,K}Ka , {nb,K}Kb

4. BA: {na,K}Ka ,{ra+1,rb}K

5. AB: {rb+1}K
Figure 3-2 Demonstration protocol 1

In the protocol, the values na, nb, ra and rb are random numbers generated by the originator of the message in which they first appear. For example, na which appears in the first message, is a random number chosen by A. The key Ks is the public key of the server. The keys Ka and Kb are the secret keys of the clients A and B respectively, shared with S. And the session key K that will be used by A and B to communicate with each other is generated by server S. Here, only message 3 and 4 can be guessed because of containing cipher-text encrypted under the poorly chosen passwords (Ka and Kb). We focus on the first part of message 3 ({na,K}Ka), and guess the Ka. While only performing the “simple guessing attacks”, we cannot verify our guess without other knowledge since the random number na and the session key K are both unpredictable. If continuing to analyze the message 4 of the protocol, we can find that the second part ({ra+1,rb}K) can be deciphered with the session key K derived from our guess in message 1. We get the possible ra+1 now. Since the ra appeared in the message 1 is clear-text, we can verify the relationship between the ra and the derived ra+1. Until now, the “cascade guessing attack” performs successfully. In more detail, the “cascade guessing attack” is as follows:

· The attacker captures all messages of one run of the protocol.

· The following steps are iterated until all possible candidates of password Ka are tested:

1. Pick a candidate

2. compute {
[image: image4.wmf]na

,
[image: image5.wmf]K

} = [{na,K}Ka]
[image: image6.wmf]Ka

where {na,K}Ka is the first part of message 3
3. compute {

,
[image: image7.wmf]rb

} = {{ra+1,rb}K}
[image: image8.wmf]K

 where {ra+1,rb}K is the second part of message 4
4. compute ra+1 and compare it with

where ra is the second part of message 1
A match in the last step indicates a correct guess of the password Ka.

3.3
Insider Guessing Attacks

From the demonstration protocol 1, we know if the session key K is directly encrypted under the poorly chosen password, the protocol is vulnerable to the “cascade guessing attacks”. A revision of the demonstration protocol 1, which is resistant to “cascade guessing attacks”, is presented as follows:

1. AB: {A,B,na1,na2}Ks , ra
2. BS: {A,B,na1,na2}Ks , {B,A,nb1,nb2}Ks
3. SB: {na1,K na2}Ka , {nb1,K nb2}Kb

4. BA: {na1,K na2}Ka , {ra+1,rb}K

5. AB: {rb+1}K

Figure 3-3 Demonstration protocol 2
Comparing with the demonstration protocol 1, a random number na2 is included in the authentication messages of demonstration protocol 2. The random number na2 prevents the attacker from deriving the session key K. That is because the attacker cannot get the exact value of na2 to release K from Kna2, such that he is unable to verify whether his guess is correct. Therefore, the demonstration protocol 2 is immune to the “cascade guessing attacks”.

Although we would like to assume that the communicating principals A and B trust each other, it does not seem appropriate to extend that trust to sharing passwords of each other. Each principal is possible to try to guess the other’s password with the aid of the residue of a successful transaction, which is called “insider guessing attacks”. To show that the demonstration protocol 2 is vulnerable to the “insider guessing attacks”, we suppose that the principal B is malicious and try to guess the password of principal A. In the demonstration protocol 2, B can decrypt the second part of message 3 and do an exclusive-or (XOR) operation on K nb2 with nb2 to obtain the exact session key K. Then B performs a guess on Ka and decrypts the first part of message 3 to get the guessing value of na1 and K na2. After XORing K na2 with K to obtain na2, B can try to construct the first part of message 2 with na1, na2 and the public key Ks of the server. If the constructed message is identical to the real one, B gets a correct guess on Ka and succeeds to perform the “insider guessing attack”. In more detail, the “indider guessing attack” is as follows:

· The malicious principal B records all messages of one run of this protocol

· The following steps are iterated until all possible candidates of password Ka are tested:

1. Pick a candidate

2. compute {

,

} = [{na1,Kna2}Ka]
[image: image9.wmf]Ka

, where {na1,Kna2}Ka is the first part of message 3
3. compute

 =

K
4. construct {A,B,

,

}Ks
5. compare {A,B,

,

}Ks with {A,B,na1,na2}Ks, where {A,B,na1, na2}Ks is the first part of message 2

A match in the last step indicates a correct guess of the password Ka. It is more difficult to protect against “insider guessing attacks” than “simple guessing attacks” and “cascade guessing attacks”, because the malicious principals (insider attackers) own more information than outsider attackers.

3.4
Replay Guessing Attacks

“Insider guessing attacks” may be defeated by introducing a sufficiently large random number, which is called a confounder, into the authentication messages that are to be encrypted under the public key of the server. A confounder is distinct from a nonce in that a confounder has no purpose other than to inhibit the attacker to construct the authentication messages. The value of a confounder may be ignored by the legitimate recipient of the message in which it appears. A revision of of the demonastraion protocol 2, which is resistant to “insider guessing attacks”, becomes the following:

1. AB: {A,B,na1,na2,na3}Ks , ra

2. BS: {A,B,na1,na2,na3}Ks , {B,A,nb1,nb2,nb3}Ks
3. SB: {na1,K na2}Ka , {nb1,K nb2}Kb

4. BA: {na1,K na2}Ka , {ra+1,rb}K

5. AB: {rb+1}K
Figure 3-4 Demonstration protocol 3
After introducing the confounder, the demonstration protocol 3 is secure against “insider guessing attacks”. Because a malicious principal B cannot construct the first part of message 2 to verify his guess without the confounder na3, even though he can guess Ka to find na1and na2.

In demonstration protocol 3, the server S cannot determine whether the request message (message 2) received is fresh. An attacker who has captured the old messages of one run of the protocol can masquerade as principal B by resending the old message 2 to the server. The server S decrypts the message 2 received, then selects a new session key K and replies with a new message 3. We know that the only difference between old and new message 3 is the session key K, such that the attacker can mount a “replay guessing attack”. That is the attacker can guess Ka (or Kb) by decrypting both the first (or second) part of old and new message 3 and comparing the random number na1 (or nb1) in the two messages. The attacker succeeds to verify his guess and performs the “replay guessing attack”. In more detail, the above attack is as follows:

· The attacker records all the messages of one run of this protocol

· The attacker masquerades as B and replays the old message 2 :

{A,B,na1,na2,na3}Ks, {B,A,nb1,nb2,nb3}Ks and gets a new reply message 3:

{na1,K na2}Ka’, {nb1,K nb2}Kb’
· The following steps are iterated until all possible candidates of password Ka are tested:

1. Pick a candidate

2. compute {

,

} = [{na1,K na2}Ka]
[image: image10.wmf]Ka

, where {na1,Kna2}Ka is the first part of old message 3
3. compute {

,

} = [{na1,K na2}Ka(]
[image: image11.wmf]Ka

, where {na1,Kna2}Ka(is the first part of new message 3
4. compare

 with

A match in the last step indicates a correct guess of the password Ka.

4. Proposed Authentication Protocols
In this section, we propose two protocols which are immune to guessing attacks They are originally designed for providing better security and efficiency.
4.1
A Trusted Third-Party Protocol with Public Key Systems

According to the guidelines, we propose an efficient authentication and key distribution protocols in this section. It is supposed that all the participators know the public key of the trusted server. The proposed protocol is described in Figure 4-1.

1. AB: {A,na,Ka}Ks ,ra

2. BS: {A,na,Ka}Ks , {B,nb,Kb}Ks
3. SB: {A,B,K}na ,{B,A,K}nb
4. BA: {A,B,K}na ,{ra,rb}K

5. AB: {rb}K
Figure 4-1 Proposed authentication protocol with public key systems

In the proposed protocol, S is the trusted authentication server, and the public key Ks of server is known by each principal in the system. The principals A and B share their secrets (poorly chosen password) Ka and Kb with S respectively. Four random numbers (na, nb, ra, rb) are generated by A and B respectively in the protocol. The na and nb act as randomly chosen encryption key, and the ra and rb are used for the purpose of challenge-response. After authentication procedure, A and B negotiate a session key K to communicate with each other securely. Here, we are not going to explain the protocol in detail because of its concision.

The “simple guessing attacks” and “cascade guessing attacks” are not successful because no user-chosen password is used as encryption key. Though the message 2 can be replayed because S cannot detect the freshness, no additional information is helpful to perform a “replay guessing attacks” from S’s reply. Knowing the session key is not helpful to mount a guessing attack on user password in this protocol, so the “insider guessing attacks” are also not successful. Comparing with other related work [GLNS,Gong95,and etc], we minimize the use of the random numbers and the amount of encryption, and eliminate the requirement of the timestamp.

4.2
A Trusted Third-Party Protocol without Public Key Systems

We have said that knowing the public key of the trusted third-party is infeasible in many environments. In Figure 4-2, another trusted third-party key distribution protocol is provided in which the server’s public key is not needed any more.
1. AB: A, {αXa modβ}Ka ,ra

2. BS: A, B, {αXa modβ}Ka , {αXb modβ}Kb
3. SB: {αYa modβ}Ka , {A,B,K}Ka,s ,

{αYb modβ}Kb , {B,A,K}Kb,s
4. BA: {αYa modβ}Ka , {A,B,K}Ka,s, {ra,rb}K
5. AB: {rb}K
Figure 4-2 Proposed authentication protocol without public key systems

The principals A and B share their secrets (poorly chosen password) Ka and Kb with S respectively. And the Diffie-Hellman exponential key exchange [Diffie76] is used in the protocol. Before the protocol, The two large prime numbers α and β are generated for long-term use. Xa, Xb, Ya and Yb are random numbers for the purpose of key exchange as follows:

Ka,s = ((αXa modβ) Ya) modβ = αXaYa modβ
Kb,s = ((αXb modβ) Yb) modβ = αXbYb modβ
The Diffie-Hellman exponential key exchange is solely used to securely pass symmetric encryption keys (Ka,s and Kb,s). Though an attacker can guess the Ka (or Kb), and decrypt both {αXa modβ}Ka and {αYa modβ}Ka (or {αXb modβ}Kb and {αYb modβ}Kb) with his guessed Ka (or Kb) as the decryption key, he cannot perform the calculation of Ka,s (or Kb,s) and cannot find any relationship to verify his guess. Except to encrypt the exponential message, the user passwords are not used in the protocol. This leads that the attacker has no other chance to perform off-line guessing attacks. Moreover, this protocol are not vulnerable to “man in the middle” attacks, since exponential messages such as αXa modβ are encrypted under the user password.

5. Security Analysis and Comparison

In this section, we describe some common attacks and explain why the proposed protocols can prevent these attacks. Moreover, we make a comparison between our protocols and other related protocols.

5.1
Trivial Attacks

In general, there are two types of trivial attacks: replay attacks and substitution attacks. A trivial replay attack is an attack that an intruder successfully impersonates somebody else by replaying one or more old messages collected before. A substitution attack is an attack that an intruder successfully impersonates somebody else by substituting one or more messages during authentication phase. Many advanced attacks are based on these two types of attacks.

Since all of our protocols are nonce-based instead of timestamp-based protocols and each credential in our protocols contains the verifier’s nonce used to verify the freshness of that credential and linkage with the previous message, trivial substitutions and replays of old authentication messages can be easily prevented.

5.2
Oracle Session Attacks

An oracle session attack was pointed out by Ray Bird, et al. [Bird93]. In the attack, an intruder starts two separate authentication sessions with two different service providers, such that he is able to take advantage of the messages in one authentication session to successfully impersonate a particular user in the other session. This kind of attack can be effectively prevented if the encrypted messages involved in each run of the protocol are different from or logically linked with one another. In our proposed authentication protocols, the session key is encrypted with a pre-negotiated random key. Without knowing the pre-negotiated random key, the intruder cannot attack the protocol successfully.

5.3
Comparisons

Compared with the related protocols, we find that our proposed protocol with public key systems has the advantage of less random numbers and the protocol without public key systems has the advantage that it doesn’t need the help of the authentication server’s public key.

of messages
need timestamp
need server’s public key
of
random
numbers
of
exponentiation

GLNS protocol
5
Yes
Yes
8
2

GLNS nonce protocol
7
No
Yes
8
2

Gong optimal protocol
5
No
Yes
10
2

Keung-Siu protocol
5
No
Yes
6
2

Kwon-Kang-Song protocol
5
No
Yes
6
2

Proposed protocol with public key systems
5
No
Yes
4
2

Proposed protocol without public key systems
5
No
No
6
4

Table 6.1
Comparisons
6. Conclusions

In this paper, we give a detailed study on the problem of guessing attacks. First, we explore four common forms of the guessing attacks: “simple guessing attacks”, “cascade guessing attacks”, “insider guessing attacks” and “replay guessing attacks”. The common forms are very useful to diagnose whether a protocol is vulnerable to guessing attacks. Then, we propose two efficient authentication protocols. Both of them are immune to guessing attacks.
References

[Bellovin92]
S. Bellovin and M. Merritt, “Encrypted Key Exchange: Password-based Protocols Secure against Dictionary Attacks,” In IEEE Computer Society Symposium on Research in Security and Privacy, pages 72-84, May 1992.
[Denning81]
D. Denning and G. Sacco, “Timestamps in Key Distribution Systems,” Communications of the ACM, August 1981.
[Diffie76]
W. Diffie, M. E. Hellman, “New Directions in Cryptography,” IEEE transactions on Information Theory, vol. IT-11, pp. 644-654, November 1976.

[ElGamal85]
T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Transactions on Information Theory, vol. IT-31, pp. 469-472, July 1985.

[Gong90]
L. Gong, “Verifiable-text Attacks in Cryptographic Protocols,” Proceedings of IEEE INFOCOM’90, pp. 686-693, 1990.
[Gong93]
L. Gong, M. Lomas, R. Needham, J.saltzer, “Protecting Poorly Chosen Secrets from Guessing Attacks,” IEEE Journal on Selected Areas in Communications,” Vol. 11, No. 5, pp. 648-656, 1993.

[Gong95]
L. Gong, “Optimal Authentication Protocols Resistant to Password Guessing Attacks,” Proceedings of the 8th IEEE Computer Security Foundation Workshop, County Kerry, Ireland, June 1995.

[Keung95]
S. Keung and K. Siu, “Efficient Protocols Secure Against Guessing and replay Attacks,” Proceedings of the Fourth International Conference on Computer Communications and Networks, page 105-112, 1995.

[Kohl94]
J.T. Kohl, B. C. Neuman, and T. Ts’o, “The Evolution of the Kerberos Authentication System,” Distributed Open Systems, IEEE Computer Society Press, 1994, pp. 78-94.

[Kwon97]
T. Kwon, M. Kang, J. Song, “An Adaptable and Reliable Authentication Protocol for Communication Networks,” Proceedings of IEEE INFOCOM’97, Kobe, Japan, April 1997.

[Morris79]
R. Morris, K. Thompson, “Password Security: A Case Study,” Communications of the ACM, Vol. 22, No. 11, pp. 594-597, 1979.

[Needham78]
R. Needham and M. Schroeder, “Using Encryption for Authentication in Large Networks of Computers,” Communications of the ACM, Vol. 21, No. 12, December 1978.

[Otway78]
D. Otway and O. Rees, “Efficient and Timely Mutual Authentication,” Operating System Review, Vol. 21, No. 1, January 1978.

[Rivest78]
R. L. Rivest, A. Shamir, and L. Adleman, “A method of obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120-126, February 1978

[Shieh96]
S. P. Shieh, W. H. Yang, “An Authentication and Key Distribution System for Open Network Systems,” ACM Operating Systems Review, vol. 30, no. 2, pp. 32-41, April 1996.

[Tsudik93]
G. Tsudik and E. Van Herreweghen. “Some Remarks on Protecting Weak Keys and Poorly-Chosen Secrets from Guessing Attacks,” In Proceedings of the 12th IEEE symposium on Reliable Distributed Systems, pp. 136-141, Princeton, New Jersey, October 1993.

Biography

Shiuh-Pyng Shieh received the M.S. and Ph.D. degrees in electrical engineering from the University of Maryland, College Park, in 1986 and 1991, respectively. He is currently the Director of Computer and Network Center and a Professor with the Department of Computer Science and Information Engineering, National Chiao Tung University. From 1988 to 1991 he participated in the design and implementation of the B2 Secure XENIX for IBM, Federal Sector Division, Gaithersburg, Maryland, USA. He is also the designer of SNP (Secure Network Protocols). Since 1994 he has been a consultant for Computer and Communications Laboratory, Industrial Technology Research Institute, Taiwan in the area of network security and distributed operating systems. He is also a consultant for the National Security Bureau, Taiwan. Dr. Shieh was on the organizing committees of a number of conferences, such as International Computer Symposium, and International conference on Parallel and Distributed Systems. Recently, he is the general chair of 1998 Network Security Technology Workshop, the program chair of 1999 Mobile Computing Conference and 1997 Information Security Conference (INFOSEC’97). His research interests include internetworking, distributed systems, and network security.
- 42 -

- 43 -

_955800132.unknown

_956070884.unknown

_994363216.unknown

_994364832.unknown

_994364877.unknown

_956071378.unknown

_955800134.unknown

_955800135.unknown

_955800133.unknown

_955800122.unknown

_955800128.unknown

_955800130.unknown

_955800131.unknown

_955800129.unknown

_955800124.unknown

_955800127.unknown

_955800123.unknown

_955800118.unknown

_955800120.unknown

_955800121.unknown

_955800119.unknown

_955800114.unknown

_955800116.unknown

_955800117.unknown

_955800115.unknown

_955800112.unknown

_955800113.unknown

_955800110.unknown

_955800111.unknown

_955800108.unknown

_955800109.unknown

_955800107.unknown

